On gamma quotients and infinite products

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On gamma quotients and infinite products

Convergent infinite products, indexed by all natural numbers, in which each factor is a rational function of the index, can always be evaluated in terms of finite products of gamma functions. This goes back to Euler. A purpose of this note is to demonstrate the usefulness of this fact through a number of diverse applications involving multiplicative partitions, entries in Ramanujan’s notebooks,...

متن کامل

Quotients of Infinite Reflection Groups*

Let W be the Weyl group of a finite dimensional complex simple Lie algebra. The structure of W is quite well-known ; see [2, 3] for instance. In particular, W is finite and W/O2(W) is isomorphic to a symmetric group or an orthogonal or symplectic group over the field of two elements. It is natural to consider certain infinite analogues W(p,q,r) of such Weyl groups and inquire about their struct...

متن کامل

On Quotients of Moving Average Processes with Infinite Mean

In this paper it is shown that one can estimate the sum of the weights used to form a stationary moving average stochastic process based on nonnegative random variables by taking the limit in probability of suitable quotients, even when the random variables involved have infinite expectation.

متن کامل

On Fox and augmentation quotients of semidirect products

Let G be a group which is the semidirect product of a normal subgroup N and some subgroup T . Let In(G), n ≥ 1, denote the powers of the augmentation ideal I(G) of the group ring Z(G). Using homological methods the groups Qn(G,H) = In−1(G)I(H)/In(G)I(H), H = G,N, T , are functorially expressed in terms of enveloping algebras of certain Lie rings associated with N and T , in the following cases:...

متن کامل

Infinite Products of Infinite Measures

Let (Xi, Bi, mi) (i ∈ N) be a sequence of Borel measure spaces. There is a Borel measure μ on ∏ i∈N Xi such that if Ki ⊆ Xi is compact for all i ∈ N and ∏ i∈N mi(Ki) converges then μ( ∏ i∈N Ki) = ∏ i∈N mi(Ki)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Mathematics

سال: 2013

ISSN: 0196-8858

DOI: 10.1016/j.aam.2013.07.003